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The Planar Circuit—An Approach to Microwave
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Abstract—Three principal categories have been known in electri-
cal circuitry so far. They are the lumped-constant (0-dimensional)
circuit, distributed-constant (1-dimensional) circuit, and waveguide
(3-dimensional) circuit. The planar circuit to be discussed in general
in this paper is a circuit category that should be positioned as a
2-dimensional circuit. It is defined as an “electrical circuit having
dimensions comparable to the wavelength in two directions, but
much less thickness in one direction.”

The main subject of this paper is the computer analysis of an
arbitrarily shaped, triplate planar circuit. It is shown that a computer
analysis based upon a contour—integral solution of the wave equation
offers an accurate and efficient tool in the design of the planar circuit.
Results of some computer calculations are described.

It is also shown that the circuit parameters can be derived directly
from Green’s function of the wave equation when the shape of the
circuit is relatively simple. Examples of this sort of analysis are also
shown for comparison with the computer analysis.

I. INTRODUCTION

HREE PRINCIPAL categories have been known

in electrical circuitry so far. They are the lumped-

constant (0-dimensional) circuit, distributed-con-
stant (1-dimensional) circuit, and waveguide (3-dimen-
sional) circuit. The planar circuit to be discussed in gen-
eral in this paper is a circuit category that should be
positioned as a 2-dimensional circuit. It is defined as an
“electrical circuit having dimensions comparable to the
wavelength in two directions, but much less thickness
in one direction.”

Then three types of the planar circuit are possible.
They are the triplate type, the open type, and the
cavity type, as shown in Fig. 1. However, in this paper
mainly the triplate-type planar circuit will be dealt with
to avoid confusion.

There are three reasons that the planar circuit should
be investigated in general at present [1], [2].

1) The planar circuit has wider freedom in the circuit
design than the stripline circuit does. In other words,
the former includes the latter as a special case. There-
fore, if the design technique for the planar circuit is
established in future, it will offer an exact and efficient
tool in the design of microwave integrated circuits.

2) The planar circuit can offer a lower impedance
level than the stripline circuit does. The recently devel-
oped microwave semiconductor devices, such as Gunn,
IMPATT, or Schottky-barrier diodes, usually require a
low-impedance circuitry.
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Three types of the planar circuit. (a) Triplate type.
(b) Open type. (c) Cavity type.

Fig. 1.

3) The planar circuit is easier to analyze and design
than the waveguide circuit. By virtue of the recent
progress in the computer, the analysis of an arbitrarily
shaped planar circuit is within our reach if we rely on
the computer.

We should note that the planar circuit is not an en-
tirely new concept. A special case of this circuitry, the
disk-shaped resonator, has been used in the stripline
circulator or even as a filter [3]-[5]. The so-called
“radial line” is also a special case of the planar circuit.
However, to the authors’ knowledge, general treatment
of the planar circuit, or, in other words, the analysis of
an arbitrarily shaped planar circuit, has never been
presented.

The main subject of this paper is the analysis of an
arbitrarily shaped, triplate planar circuit. The term
“analysis” denotes here the determination of the circuit
parameters of the equivalent multiport as shown in
Fig. 2.

II. Basic EQUATIONS

A symmetrically excited, triplate planar circuit as
shown in Fig. 2(a) will be considered throughout this
paper. The model to be considered is as follows.

An arbitarily shaped, thin conductor plate is sand-
wiched between two ground conductors, with a spacing
d from each of them. The circuit is assumed to be excited
symmetrically with respect to the upper and lower
ground conductors. There are several coupling ports,
and their widths are denoted by W, Wj, - - - . The rest
of the periphery is assumed to be open circuited. The
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(a) An arbitrarily shaped planar circuit.

Fig. 2.
(b) Its equivalent multiport circuit.

xy coordinates and the z axis, respectively, are set
parallel and perpendicular to the conductors.

When the spacing d is much smaller than the wave-
length and the spacing material is homogeneous and
isotropic, it is deduced directly from Maxwell’s equation
that a two-dimensional Helmholtz equation dominates
the electromagnetic field in the planar circuit:

82

Vp? = ——+
0x?

62

(Ve -+ )V =0, 52‘

k% = oy, (1)
where V denotes the RF voltage of the center conductor
with respect to the ground conductors; w, €, and u are
the angular frequency, permittivity, and permeability of
the spacing material, respectively.! The network charac-
teristics can be determined by solving (1) under given
boundary conditions.

At most of the periphery where the coupling ports are
absent, no current flows at the edge of the center con-
ductor in the direction normal to the edge, because the
circuit is excited symmetrically with respect to the
upper and lower ground conductors.? Hence, the follow-
ing boundary condition must hold:

aV/on =0 2)
where # is normal.
! In most of the discussions in this paper the circuit is assumed to

be lossless. When we consider a small circuit dissipation, & is given,
approximately, as

k =k —jk", >R (F1)
where o

k= wveu

k' = wv/en (tan s + 7/d)/2 F2)

é is loss angle of the spacing material, and 7 is skin depth.

2 This 1s equivalent to assuming that the periphery is a perfect
magnetic wall. Actually, however, a fringing field [see Fig. 2(a)] is
always present. A simple but reasonable correction for it is to extend
the periphery outwards by 2d(log, 2)/7 to simulate the sfatic fringing
capacitance. :
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Fig. 3. Symbols used in the integral equation.

At a coupling port, (2) is no longer valid. Let the
width of the port and the surface current density normal
to the periphery C be denoted by W and 4., respectively.
If an admittance Y is connected to this port,

av
2 f inds = 24W f (——)ds
Y = w _ w on

f Vds/W wud f Vds
w w

holds. The factor 2 expresses the fact that the current
flows on both the upper and lower surfaces of the center
conductor.

©)

I11. COMPUTER ANALYSIS
A. Integral Equation

The main feature of the planar circuit, as compared
with waveguide circuit, is that we can analyze an arbi-
trarily shaped planar circuit within a reasonable com-
puter time.

We consider an arbitrarily shaped, triplate planar
circuit with several coupling ports, as shown in Fig. 3.
Solving the wave equation over the entire area inside
the contour C will require a long computer time. How-
ever, when we are concerned only with the RF voltage
along the periphery, such a computation is not neces-
sary. Using Weber’s solution for cylindrical waves [6],
the potential at a point upon the periphery is found to
satisfy the following equation (refer to the Appendix
for the detail of the derivation):

2V (s) = f {k cos 0H . (kr)V (s0)
— joud in(so) Ho® (kr) }dso.  (4)

In this equation H,® and H;® are the zeroth-order and
first-order Hankel functions of the second kind, respec-
tively, 7, denotes the current density flowing outwards
along the periphery, s and s, denote the distance along
contour C. The variable # denotes distance between
points M and L represented by s and s, respectively,
and 6 denotes the angle made by the straight line from
point M to point L and the normal at point L, as shown
in Fig. 3. When 1, is given, (4) is a second-kind Fredholm
equation in terms of the RF voltage.

B. Circuit Parameters of an Equivalent N-Port [7]

For numerical calculation we divide the periphery
into N incremental sections numbered as 1, 2, - - -, IV,
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SAMPLING POINTS

Fig. 4. Symbols used in the computer analysis.

having widths Wy, W, - - -, Wy, respectively, as illus-
trated in Fig. 4. Coupling ports are assumed to occupy
each one of those sections. Further, we set N sampling
points at the center of each section.

When we assume that the magnetic and electric field
intensities are constant over each width of those sec-
tions, the above integral equation results in a matrix
equation:

N

2jVi= 2 {kV,Gij+ joudI;F ;} (5)
i=1
where
1 c
— Ho® (kr)ds, (Gt #75)
Fy=1{°'""
N 25 EW; o
1——(log —1+’Y), @E=7
T 4
f cos 8H® (kr)ds, @ #7)
Gij={Jw
0, (i=37 (6
¥=0.5772 - - - is Euler’s constant, and I;=—i,W;

represents the total current flowing into the jth port.
The formulas for F;; and Gi; in (6) have been derived
assuming that the 7th section is straight.

We can temporarily consider that all the N sections
upon the periphery are coupling ports and that the
planar circuit is represented by an N-port equivalent
circuit. Then, from the above relations, the impedance
matrix of the equivalent N-port circuit is obtained as

Z=U"H )

where U and H denote N-by-N matrices determined by
the shape of the circuit, whose components are given as

{“ij = —kGi;,  (i5])
Uiz = 2]
and U1 denotes the inverse matrix to U.

In practice, most of the IV ports described above are

open circuited. When external admittances are con-
nected to several of them and the rest of the ports are

L wud
hij =4 - Fi (8
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Fig. 5. Center conductor of a two-port planar circuit.

left open circuited, the reduced impedance matrix can
be derived without difhculty.

C. Transfer Parameters of a Two-Port Circuit [8]

In the case of a two-port circuit, the transfer param-
eters 4, B, C, and D of the equivalent two-port can be
given more simply as'follows.

Suppose P and Q denote the driving terminal and
load terminal, respectively, as shown in Fig. 5. Admit-
tances ¥, and Y, are connected to those terminals:

Y, = 2in(P)Wp/sz

Yy = 2i(QW/V, 9)
Then Y, has a negative conductance componén t. Equa-
tion (5) can be applied to all the N sampling points.

Thus the RF voltage at each point can be given by the
following matrix equation:

Vi
v+ v, v+ YWl - |=0
V.

(10)

where V' and W are again matrices determined by the
shape of the circuit:

[0 - - 0]
S

._0 . UNp 0

m0 - W - O
W = y Wig hiq
L0 - wy, - 0

In order that a steady field exists in the circuit, from the
nontrivial condition,

det [U+ VY,V + VY, W] =0 (11)
must hold. This equation directly gives a bilinear rela-
tion between —Y,, the driving point admittance, and
Y,, the load admittance, as

'+ DY,
A+ B'Y,

»

12)

where 4’, B’, (', and D’ are given as the following de-



248

terminants:
Ui U1p UIN
A" =
UN1 INp UNN
P q
11 - T1p Wiq UIN
B =
UN1 UNp WNg UNN
C’ = det [U]
q
%11 Wig UiN
D' =
UN1 WNg UNN

Equation (12) shows that A’, B/, ', and D’ are quan-
tities proportional to the so-called transfer parameters
A, B, C, and D of the equivalent two-port circuit. In
order that the reciprocity condition (v/AD—BC=1)
holds, we should divide A’, B/, ', and D’ by
VA'D'—B'C’ to get A, B, C, and D, respectively, as

<A B) 1 <A’ B')
¢ D) AD-BC\C D)
When the circuit is a one-port circuit, the input ad-
mittance is given simply as (C'/4").
When the circuit has no coupling port and no circuit
loss, €’ =0 gives the proper frequency; that is, the reso-
nant frequency of the circuit. In this situation the pla-

nar circuit is the Babinet dual of a metal wall TE-mode
waveguide at its cutoff frequency.

(13)

D. Examples of Computer Analysis

In computing G;; and Fy;, the integrals in (6) can be
subdivided into as many subsections as necessary to
assure the desired accuracy. However, in the following
calculations the simplest approximation is used:

G[j =

COSs Hlel(z)(ki’ij) LV]
Ho(z) (k?’ij).

(14)
(15)

1) One-Port Disk-Shaped Circuit: As an example of
the computer analysis, the input admittance of a one-
port disk-shaped circuit with ¢=2.62, a=1.841]m],
d=0.628[m] was computed first. (These values are not
realistic ones;a =1.841[m] is used so that the fundamen-
tal resonant mode is given by 2=1[m=1].) The result is
shown in Fig. 6. This figure shows the variation of the
input admittance, given by (C€’/A4’), around the funda-
mental resonant frequency fo=1.841/2mwa~/eu where
1.841 is the first root of Ji/(x). The parameter N denotes
the number of the sampling points along the periphery.
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Fig, 6. Input admittance of an one-port disk-shaped circuit.
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Fig. 7. The variation of |[C’| as a functions of %

of a disk-shaped circuit.

TABLE 1

CoMPUTED FirRsT EIGENVALUE £ CORRESPONDING TO DIPOLE MODE
oF A Disg-SHAPED CIRCUIT FOR VARIOUS N

Number of Sections N Eigenvalue &

20 1.00013
30 1.00008
40 1.00007

As N increases, the real frequency locus approaches the
values obtained by the simple theories as described in
Section IV, shown as the small crosses along the ordi-
nate in Fig. 6. Note that the abscissa is expanded by a
factor of ten to exaggerate the computation error.

The values of % giving ¢"=det [U]=0 corresponds
to the resonant frequencies of the circuit. From the
simple analyses to be: described in Section IV, they
should satisfy J,’(ka) =0. For a=1.841[m], & should
then be 1.000[m=1], 1.659[m~!], and so forth. This fact
gives a good check of the computation accuracy.

Since €’ is complex due to the computation error and
C’'=0is never realized for real &, we define k which gives
the minimum of | C’| as the eigenvalue. The variation
of |C’| is shown as-a function of % in Fig..7, which
shows the first (£=1.00) and the second (£=1.66) min-
ima. The former corresponds to the fundamental dipole
mode (the first root of Ji’(ka) =0) and the latter to the
quadrupole mode (the first root of J,'(ka)=0). Table I
shows the former k obtained for various N. As N in-
creases k tends toward unity.

2) Two-Port Disk-Shaped Circuii: Next the transfer
parameters 4, B, C, and D of a disk-shaped circuit
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Fig. 8, Transfer parameters of a two-port
. disk-shaped resonator.
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Fig. 9. Input admittance of a two- port disk-shaped resona tor

loaded by various load resistances Ryz.

having two-ports on its opposite sides were computed,
and the result is shown in Fig. 8. In this figure the
abscissa gives the real part and the ordinate the imag-
inary part of the transfer parameters obtained in the
case N=40. Parameters 4 and D are equal to each
other, as the circuit is symmetrical, and they take —1.0
at the resonant frequency.

By using the obtained transfer parameters and the
relation Yin =(C+D/R.)/(A+B/R;), the input admit-
tance of the disk-shaped circuit loaded by a pure resis-
tance Ry was computed as shown in Fig. 9. The curves
show the computer calculations for load resistances of
50, 500, and 5000 Q. The loci in this figure cover a fre-
quency range from the dipole mode of resonance to the
quadrupole mode of resonance. In between these two
low-admittance, parallel resonant points we find the
frequency where the input admittance is very high,
that is, a series resonant point, on the right-hand sides
of loci. Note that such frequencies can never be found
except by computer analysis.

Fig. 10 shows the RF voltage distribution along the
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Fig. 10. The RF voltage distribution, magnitude (solid curve), and
phase (broken curve), along the periphery of a disk-shaped cir-
cuit for Rz =500 @ and N =40, for various frequencies.
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Fig. 11. The power transmission of a disk-shaped circuit calculated

numerically for various characteristic impedances.

periphery for R, =500 @ and N =40, for various fre-
quencies. In this figure, both ends and the center of the
abscissa correspond to the load terminal and the driving
terminal, respectively. The solid and broken curves
show the magnitude (arbitrary scale) and phase of the
RF voltage along the periphery, respectively. It is found
that as the frequency increases, the distribution of the
RF voltage changes from a dipole mode to a quadrupole
mode. At the frequency of 1.12f,, the RF voltage at the
input port is minimized; this corresponds to the series
resonance of the circuit.

Fig. 11 shows the power transmission calculated nu-
merically by using the relation Sy=27Z,/(4Z,+B
+ CZy2+DZy) for the case when the characteristic im-
pedances Z; of the input and output lines are equal to
each other and are pure resistance. It is found that both
the frequency giving the maximum power transmission
and the transmission bandwidth increase as the line
impedance Zj is lowered.

3) Arbitrarily Shaped Circuit: As an example of more
irregularly shaped circuit, a planar circuit, as shown in
Fig. 12, was studied. Fig. 13 shows the frequency loci
of the input admittance for R; =300 & and N =32. In
this figure fo denotes the resonant frequency of the
quadrupole mode of a regular square circuit having
dimensions 2a by 2a. In this figure parallel resonances
are found at 0.54f, and 0.86fc, and a series resonance
at 0.64f,.
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Fig. 12, Center conductor of an irregulérly shaped circuit.
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Fig. 13. The frequency locus of the input admittance

for R, =500 Q and N =30.
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Fig. 14. Symbols used in the Green’s function analysis.

IV. AnNaLysis Basep UroN GREEN’s FUNCTION

. When the shape of the circuit is relatively simple (a
disk, for example) and we can get the Green’s function
of the wave equation analytically, the equivalent cir-
cuit parameters can be derived directly from the
Green's function as follows.

We introduce the Green's function G of the second
kind, having a dimension of impedance which satisfies

Vix,y) = f fD G(x, | %o, yo)i(wo, yo)daadys  (16)

inside the contour C shown in Fig. 14, and an open
boundary condition

8G/on = 0 an
along C. In (16), 4(xo, o) denotes an assumed (fictitious)
RF current density injected normally into the circuit
(see Fig. 14).

In a real planar circuit, current is injected from the
periphery where a coupling port is present. Hence the
RF voltage at a point upon the periphery is given by a
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Fig. 15. (a) One-port square resonator. (b) One-port disk-shaped
resonator. (c) The equivalent circuit describing the input admit-
tance of one-port resonator.

line integral

Vis) = —f G(s] 50)2n(s0)dso (18)
where s and sg are used to denote distance along C, and
in is the line current density normal to C at coupling
ports. Since 4, is present only at coupling ports, the
RF voltage at the sth port is given approximately as

14 'ZI———l f G(s| so)dsod (19)
i = : S| S SodS
7 awaw e, v

where I;= —2f w4a(S0)ds, represents the current flowing
into the jth port on both the upper and lower surfaces.
Hence, the elements of the impedance matrix of the
equivalent N-port circuit are

sl
Zij = G(s | so)dsods.
TawawiJ (5| sodso

As examples of the analysis based upon Green's func-
tion, the input impedances of one port disk and square
circuits as shown in Fig. 15 are calculated.

(20)

A. Square Circuit

For a square circuit pattern [see Fig. 15(a)] having
aXb, the Green’s function is given as [9]

m o kA R — R
-cos (kx) cos (Byy) (21)

] 4 cos (ks%xo) cos (kyyo)
G(x7y| xO)yO) =]‘°/‘Ldﬁ Z EM'E_——ZIO

where k,=mn/a and k,=nw/b.
We compute the input impedance [Z;, shown in
Fig. 15(a)] of a one-port square circuit having the
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TABLE II

THE PrOPER FUNCTION AND EQUIVALENT CIRCUIT PARAMETERS
oF THE TRIPLATE-TYPE, SQUARE, AND Disk CIRCUITS

Disk Resonator
[Fig. 15(b)]

Square Resonator

Planar Resonator [Fig. 15(a)]

Proper function cos (kzx) cos (kyy) Jn(kmnr) cos (mB)
Resonant fre- v/ (m]a)*+ (n]b)? kmn
quency fua T aun Ve IrnJen
2
T
2ud ud 1
Ry ot ey Sl o S
Gmn 25 frunCon/ Qo 2 funCman/ Qo
F sin (k,W) sin (mW/a)
k,W mW/a
Qo 1=Q4 Q!
Qo Qa=1/tan & (5 is the loss angle of the dielectrics)

Q.=d/r (r is the skin depth of the conductor)

coupling port at one of the corners as shown in Fig.
15(a). Equations (20) and (21) directly give
joud(sin (B, W)/k,W)?2
Zin= 2,2,
n m ab(k*+ k2 — kY

When we use (F1) and (F2) to consider the circuit
loss, we obtain, after some computations,

1

-T% -
" .Cmn_‘—_‘—_ Gmn
(’w Taa )

WLimn

22)

(23)

where Cuny Lma, and G, are the equivalent circuit pa-
rameters corresponding to each mode, and are tabu-
lated in Table 11.2 Equation (23) suggests that the
equivalent circuit describing the input impedance is
given [see Fig. 15(c)] as a series connection of many
parallel resonating circuits repfesenting each resonance.

B. Disk Circuit

The disk circuit is shown in Fig. 15(b). The Green’s
function is given as
G(f, 0] ¥o, 00)
250ud T m(bmn@)J m(kmar) cos (m(6 — 8,))

=22 (24)

n m (bw® — EDa2(1 — 12/ k)T n? (Bmaa)

where k,,, satisfies

a
’a—Jm(kmnr) | ;=a = 0 (nthroot). (25)
r

3 When we are concerned only with the circuit performance near
a single resonant frequency, we can also derive the equivalent circuit
parameters from the resonant frequency, stored energy, and the
unloaded Q factor, The parameters thus obtained agree with those
shown in Table 11, except for the factor F describing the effect of the
width of the terminal. This sort of analysis is fairly common in micro-
wave circuit analyses. For example, one of the reviewers of this
paper called the authors’ attention to [10).
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Fig. 16, Symbols used in the derivation of (4).

The equivalent circuit parameters of a one-port disk-
shaped circuit can be computed by using (20), and are
tabulated in Table II.

C. Multiport Disk and Square Circuits

The Green's function analysis can be applied to the
circuit of this sort, which is useful in practical inte-
grated circuitry as filters or hybrids. However, those
examples are omitted for space limitations and will be
reported elsewhere.

V. CONCLUSION

What is emphasized is that we can analyze an arbi-
trarily shaped planar circuit within a reasonable com-
puter time. The design of a planar circuit, based upon
the high-speed computer analysis and the trial-and-
error principle, will also be possible within several years.4

Among possible applications of the planar circuit, the
applications in Gunn and IMPATT oscillators seem to be
promising. Since they are oscillation devices having rela-
tively low impedances, the oscillator performance can
be improved by using the planar circuit instead of the
stripline circuitry.

APPENDIX

DERIvaTIiON OF EQUATION (4)

The RF voltage at a piont P’ inside the periphery
satisfies the following Weber’'s solution for cylindrical
waves [6],

4V (P }[ {H[,(”(kr)

V(@)

(2)
~V(Q) (r )}ds (A1)

To obtain the RF voltage of the point P just upon the
periphery, a little algebra is required. We first define a
point P’ just inside the point P as shown in Fig. 16,
where we assume that 6<<a<<k~1. By using the following
approximations of the Hankel function near the origin

2 kST 8
HD(kr) = el log v ——
T
AH D (kr) 27 3
om r s 82

* For example, the time required to obtain the entire data in Fig.
8 isabout 100 s using a typical Japanese high-speed computer HITAC-
5020E. The improvement in the speed by a factor of (1/10) may be
needed for the design.
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we can rewrite

4V (P)
«( 2 R/EFE W 2 b
- {__flog_vi__ A _V}ds
e T 2 on T 524 6%
oV OH @ (k
+f{mmW%;~V—ilQ%k (A2)
r on an

where T' denotes the contour excluding the section
—a~-—+a. If V and 8V /3n vary slowly in the minute
section between —a and a, the integrals in (A2) become

2f (e kr\/s? -+ 82 oV
——= 1 log———— —ds
T J_g 2 n

. 4]'6V{<1
B T on

ko 2482
—— (arc cosec \—/a — 1)} (A3)
2 8 2

k\/a2 -+ 62
og — 1>

2 e s 25
= ———Vds = —]Vtan“lg-

A4
o d_, 52+ 82 T (ad)

When P’ approaches P, and hence 8 tends to zero, (A2),
(A3), (A4) give

45 av ko '
— — —<2allog — — 1)y 4+ 25V (P)
T on 2
v OH @ (k)
+ | @) — — v ——"2% d5. (A5)
r on n

Next, as « tends to zero, the first term in the right-hand
side of (A5) vanishes, and hence

45V (P =
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. : oo OV OH® (kr)

This equation and the relations

14 i
—_—— = e ), In-
on Jop
OH D (kr) .
Y k cos 0H @ (Er)
7

give (4) in the text.
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