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The Planar Circuit—An Approach to IMicrowave
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Abstract—Three principal categories have been known in electri-

cal circuitry so far. They are the lumped-constant (O-dimensional)

circuit, distributed-constant (l-dimensional) circuit, and waveguide

(3-dhnensional) circuit. The planar circuit to be discussed in general

in this paper is a circuit category that should be positioned as a

2-dimensional circuit. It is defined as an “electrical circuit having

dimensions comparable to the wavelength in two directions, but

much less thickness in one direction. ”

The main subject of this paper is the computer analysis of an

arbitrarily shaped, triplate planar circuit. It is shown that a computer

analysis based upon a contour-integral solution of the wave equation

offers an accurate and efficient tool in the design of the planar circuit.

Results of some computer calculations are described.

It is also shown that the circuit parameters can be derived directly

from Green’s function of the wave equation when the shape of the

circuit is relatively simple. Examples of this sort of analysis are also

shown for comparison with the computer analysis.

I. INTRODUCTION

T

H REE PRINCIPAL categories have been known

in electrical circuitry so far. They are the lumped-

constant (O-dimensional) circuit, distributed-con-

stant (l-dimensional) circuit, and waveguide (3-dimen-

sional) circuit. The planar circuit to be discussed in gen-

eral in this paper is a circuit category that should be

positioned as a 2-dimensional circuit. It is defined as an
i~electrical circuit having dimensions comparalie to the

wavelength in two directions, but much less thickness

in one direction. ”

Then three types of the planar circuit are possible.

They are the triplate type, the open type, and the

cavity type, as shown in Fig. 1. However, in this paper

mainly the triplate-type planar circuit will be dealt with

to avoid confusion.

There are three reasons that the planar circuit should

be investigated in general at present [1], [2].

1) The planar circuit has wider freedom in the circuit

design than the stripline circuit does. In other words,

the former includes the latter as a special case. There-

fore, if the design technique for the planar circuit is

established in future, it will offer an exact and efficient

tool in the design of microwave integrated circuits.

2) The planar circuit can offer a lower impedance

level than the stripline circuit does. The recently devel-

oped microwave semiconductor devices, such as Gunn,

IMPATT, or Schottky-barrier diodes, usually require a

low-impedance circuitry.
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Fig. 1. Three types of the planar circuit. (a) Triplate type.
(b) Open type. (c) Cawty type.

3) The planar circuit is easier to analyze and ,design

than the waveguide circuit. By virtue of the ‘recent

progress in the computer, the analysis of an arbitrarily

shaped planar circuit is within our reach if we rely on

the computer.

We should note that the planar circuit is not an en-

tirely new concept. A special case of this circuitry, the

disk-shaped resonator, has been used in the stripline

circulator or even as a filter [3 ]– [5 ]. The so-called

“radial line” is also a special case of the planar circuit.

However, to the authors’ knowledge, general treatment

of the planar circuit, or, in other words, the analysis of

an arbitrarily shaped planar circuit, has never been

presented.

The main subject of this paper is the analysis of an

arbitrarily shaped, triplate planar circuit. The term

‘(analysis” denotes here the determination of the circuit

parameters of the equivalent multiport as shown in

Fig. 2.

II. BASIC EQUATIONS

A symmetrically excited, triplate planar circuit as

shown in Fig. 2(a) will be considered throughout this

paper. The model to be considered is as follows.

An arbitrarily shaped, thin conductor plate is sand-

wiched between two ground conductors, with a spacing

d from each of them. The circuit is assumed to be excited

symmetrically with respect to the upper and lower

ground conductors, There are several coupling ports,

and their widths are denoted by W’t, Wj, “ . “ . The rest

of the periphery is assumed to be open circuited. The
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Fig. 2. (a) An arbitrarily shaped planar circuit.
(b) Its equivalent multiport circuit.

xy coordinates and the z axis, respectively, are set

parallel and perpendicular to the conductors.

When the spacing d is much smaller than the wave-

length and the spacing material is homogeneous and

isotropic, it is deduced directly from Maxwell’s equation

that a two-dimensional Helmholtz equation dominates

the electromagnetic field in the planar’ circuit:

(v.’ + k’)v = o, ~z = .’ep, VT’ = : + ; (1)

where V denotes the RF voltage of the center conductor

with respect to the ground conductors; u, e, and p are

the angular frequency, permittivity, and permeability of

the spacing material, respectively.l The network charac-

teristics can be determined by solving (1) under given

boundary conditions.

At most of the periphery where the coupling ports are

absent, no current flows at the edge of the center con-

ductor in the direction normal to the edge, because the

circuit is excited symmetrically with respect to the

upper and lower ground conductors.z Hence, the follow-

ing boundary condition must hold:

8V/&z = O (2)

where n is normal.

1 In most of the discussions in this paper the circuit is assumed to
be Ioss!ess. When we consider a small circuit dissipation, k is given,
approximately, as

k = k’ –jk”, k’>> k“
where

(Fl)

k’ = W+ji

k“ = w4~ (tan 6 + r/d)/2 (F2)

6 is loss angle of the spacing material, and r is skin depth.
j This is equivalent to assuming that the periphery is a perfect

magnetic wall. Actually, however, a fringing field [see Fig. 2(a)] is
always present. A simple but reasonable correction for it is to :xtend
the periphery outwards by 2d (log, 2)/T to simulate the sta$tc fringing
capacitance.

Fig. 3. Symbols used in the integral equation.

At a coupling port, (2) is no longer valid. Let the

width of the port and the surface current density normal

to the periphery C be denoted by W and ;~, respectively.

If an admittance Y is connected to this port,

2sids – 2jW
J( )

~ ds
w &

Y+ w = (3)
. /8

J Vds/ W
w

qtd J Vds
w

holds. The factor 2 expresses the fact that the current

flows on both the upper and lower surfaces of the center

conductor.

III. COMPUTER ANALYSIS

A. Integral Equation

The main feature of the planar circuit, as compared

with waveguide circuit, is that we can analyze an arbi-

trarily shaped planar circuit within a reasonable com-

puter time.

We consider an arbitrarily shaped, triplate planar

circuit with several coupling ports, as shown in Fig. 3.

Solving the wave equation over the entire area inside

the contour C will require a long computer time. How-

ever, when we are concerned only with the RF voltage

along the periphery, such a computation is not neces-

sary. Using Weber’s solution for cylindrical waves [6],

the potential at a point upon the periphery is found to

satisfy the following equation (refer to the Appendix

for the detail of the derivation):

$2jV(s) = {k cos e~l’’’(k)v(~o)o)
c

– jwpd i~(sO)HO(2J(kr) } dso. (4)

In this equation HO(2J and HI(2) are the zeroth-order and

first-order Hankel functions of the second kind, respec-
tively, & denotes the current density flowing outwards

along the periphery, s and sOdenote the distance’ along

contour C. The variable Y denotes distance between

points M and L represented by s and SO, respectively,

and 6 denotes the angle made by the straight line from

point ill to point L and the normal at point L, as shown

in Fig. 3. When in is given, (4) is a second-kind Fredholm

equation in terms of the RF voltage.

B. Circuit Parameters of an Equivalent N-Port [7 ]

For numerical calculation we divide the periphery

into N incremental sections numbered as 1, 2, . - . , N,
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Fig. 4. Symbols used in the computer analysis.

having widths WI, WZ, . . ., W~, respectively, as illus-

trated in Fig. 4. Coupling ports are assumed to occupy

each one of those sections. Further, we set N sampling

points at the center of each section.

When we assume that the magnetic and electric field

intensities are constant over each width of those sec-

tions, the above integral equation results in a matrix

equation:

N

where

I_
1

s
Hot2J(kt-)ds, (i $ j)

Wj Wj
Fij = . kw

(
1–~ log J–

)
1+7 ,

4
(i= j)

r

(sCosOHI(2) (kr)ds,
Gij = Wj

(i # j)

(0, (i = j) (6)

y= O.5772 . . . is Euler’s constant, and Ij = —in Wj

represents the total current flowing into the jth port.

The formulas for F~i and Gii in (6) have been derived

assuming that the ith section is straight.

We can temporarily consider that all the N sections

upon the periphery are coupling ports and that the

planar circuit is represented by an N-port equivalent

circuit. Then, from the above relations, the impedance

matrix of the equivalent N-port circuit is obtained as

,&2
Fig. 5. Center conductor of a two-port planar circuit.

left open circuited, the reduced impedance matrix can

be derived without difficulty.

C. Transfer Parameters of a Two-Port GYrcud [8]

In the case of a two-port circuit, the transfer param-

eters A, B, C, and D of the equivalent two-port can be

given more simply as ‘follows.

Suppose P and Q denote the driving terminal and

load terminal, respectively, as shown in Fig. 5, Admit-

tances Y= and Yg are connected to those terminals:

Y. = 2in(P) W./v,

Y, = 2in(Q) W,JVQ. (9)

Then Yp has a negative conductance cornponen t. Equa-

tion (5) can be applied to all the N sampling points.

Thus the RF voltage at each point can be given by the

following matrix equation:

VI

[1

[U+ YPV+Y*W] : =0 (lo)

VN

where V and W are again matrices determined by the

shape of the circuit:

[1
O.v!p. o

v=”””””, Vip = h~P
. . . . .

[1
O.zg,.o

w=”””””, W;g = hio.
. . . . .

O.ZVNQ.O

In order that a steady field exists in the circuit, from the

nontrivial condition,

where U and H denote N-by-N matrices determined by det [U + YPV + YaW] = () (11)
the shape of the circuit, whose components are given as

{

~ij = – kG~j, (i # j)
must hold. This equation directly gives a bilinear rela-

– Y the driving point admittance, andh,j = y’ “~ F;j (8) ~t~o~~adm~~ance as
u~~ = 2j ‘?* ?

and U–l denotes the inverse matrix to U. C’ + D’ Yq

In practice, most of the N ports described above are
–Yp=—

A’ + B’YQ
(12)

open circuited. When external admittances are con-

nected to several of them and the rest of the ports are where A‘, B’, C’, and D’ are given as the following de-
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terminants:

I
P

2411 . Vlp . UIN

~, = . . . . .

. . . . .

~,= . . . . .

. . . . .

. .

. . I
IUN1 “ VNP - ~Nq . UAT.V

C’ = det [u]

q
‘2411 . WI* . t61N

~, = . . . . . .

. . . . .

UNI - wNq . 14NN

Equation (12) shows that A’, B’, C’, and D’ are quan-

tities proportional to the so-called transfer parameters

A, B, C, and D of the equivalent two-port circuit. In

order that the reciprocity condition (v’A D– B C = 1)

holds, we should divide A’, B’, C’, and D’ by

4A1D’— B’C1 to get A, B, C, and D, respectively, as

AB

()

1 .4’ B’

CD ()= ~A’D’ – B’C’ C’ D’ “
(13)

When the circuit is a one-port circuit, the input ad-

mittance is given simply as (C’/A’).

When the circuit has no coupling port and no circuit

loss, C’= O gives the proper frequency; that is, the reso-

nant frequency of the circuit. In this situation the pla-

nar circuit is the Babinet dual of a metal wall TE-mode

waveguide at its cutoff frequency.

D. Examples of Computer Analysis

In computing G<~and FiY, the integrals in (6) can be

subdivided into as many subsections as necessary to

assure the desired accuracy. However, in the following

calculations the simplest approximation is used:

Gji = COSdtj~l(’)(k?’ij)}~j (14)

F,j = Ho(’) (kY,j). (15)

1) One-Port Disk-Shaped Circuit: As an example of

the computer analysis, the input admittance of a one-

port disk-shaped circuit with G= 2.62, a= 1.841 [m ],

d=. 0.628 [m ] was computed first. (These values are not

realistic ones;. a = 1.841 [m] is used so that the fundamen-

tal resonant mode is given by k = 1 [m–l]. ) The result is

shown in Fig. 6. This figure shows the variation of the

input admittance, given by (C’/A’), around the funda-

mental resonant frequency f o= 1. 841/2ma <~ where

1.841 is the first root of J1’ (x). The parameter ~ denotes

the number of the sampling points along the periphery.

r
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jO.05

SIMPLE
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L

Fig, 6. Input admittance of an one-port disk-shaped circuit.

Fig. 7.

$JddL
1.0 1.2 1A 1.6 1.8

k

The variation of I C’ I as a functions of k
of a disk-shaped circuit.

TABLE I

COMPUTED FIRST EIGENVALUE k CORRESPONDINGTO DIPOLE MODE
OF A DISK-SHAPED CIRCUIT FOR VARIOUS N

Number of Sections N Eigenvalue k

20 1.00013
30 1.00008
40 1.00007

As N increases, the real frequency locus approaches the

values obtained by the simple theories as described in

Section IV, shown as the small crosses along the ordi-

nate in Fig. 6. hTote that the abscissa is expanded by a

factor of ten to exaggerate the computation error.

The values of k giving C’= det [U] = O corresponds

to the resonant frequencies of the circuit. From the

simple analyses to be’ described in Sect-ion IV, they

should satisfy J~’(ka) = O. For a = 1.841 [m], k should

then be 1.000 [m–l], 1.659 [m–l], and so forth. This fact

gives a good check of the computation accuracy.

Since C’ is complex due to the computation error and

C’= O is never realized for real k, we define k which gives ‘

the minimum of I C’] as the eigenvalue. The variation

of / 6“1 is shown as a function of k in Fig. :7, which

shows the first (k = 1.00) and the second (k = 1.66) min-

ima. The former corresponds to the fundamental dipole

inode (the first root of J1’ (ka) = O) and the latter to the

quadruple mode (the first root of J“ (ka) = O). Table I

shows the former k obtained for various N. As N in-

creases k tends toward unity.

Z) Two-Port Disk-Shaped Circuit: Next the transfer

parameters A, B, C, and D of a disk-shaped circuit
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Fig. 8. Transfer parameters of a two-port
disk-shaped resonator.
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Fig. 9. Iriput admittance of a two-port disk-shaped resona tor
loaded by various load resistances RL.

having two-ports on its opposite sides were computed,

and the result is shown in Fig. 8. In this figure the

abscissa gives the real part and the ordinate the imag-

inary part of the transfer parameters obtained in the

case N= 40. Parameters A and D are equal to each

other, as the circuit is symmetrical, and they take — 1.0

at the resonant frequency.

By using the obtained transfer parameters and the

relation YiD = (C+ D/RL)/(A +B/RL), the input adnlit-

tance of the disk-shaped circuit loaded by a pure resis-

tance RL was computed as shown in Fig. 9. The curves

show the computer calculations for load resistances of

50, 500, and 5000 Q The loci in this figure cover a fre-

quency range from the dipole mode of resonance to the

quadruple mode of resonance. In between these two

low-admittance, parallel resonant points we find the

frequency where the input admittance is very high,

that is, a series resonant point, on the right-hand sides

of loci. Note that such frequencies can never be found

except by computer analysis.

Fig. 10 shows the RF voltage distribution along the

——

OWING
TEk%NAL TEFMINAI. T&&NAL

Fig. 10. The RF voltage distribution, magnitude (scdid curve), and
phase (broken curve), along the periphery of a dlisk-shaped cir-
cuit for RL = 500 Q and N =40, for various frequencies.

Fig. 11. The power transmission of a disk-shaped circuit calculated
numerically for various characteristic impedances.

periphery for RL = ;00 Q and N = 40, for various fre-

quencies. In this figure, both ends and the center of the

abscissa correspond to the load. terminal anti the driving

terminal, respectively. The solid and broken curves

show the magnitude (arbitrary scale) and :phase of the

RF voltage along the periphery, respectively. It is found

that as the frequency increases, the distribution of the

RF voltage changes from a dipole mode to a. quadruple

mode. At the frequency of 1.12fo, the RF voltage at the

input port is minimized; this corresponds to the series

resonance of the circuit.

Fig. 11 shows the power transmission calculated nu-

merically by using the relation S21 = 2Zo/ (A 20 +B

+ CZ02 +DZO) for the case when the characteristic im-

pedances 20 of the input and output lines are eclual to

each other and are pure resistance. It is found that both

the frequency giving the maximum power transmission

and the transmission bandwidth increase as the line

impedance 20 is lowered.

3) Arbit~arily Shaped Cim.uit: As an example of more

irregularly shaped circuit, a planar circuit, as shown in

Fig. 12, was studied. Fig. 13 ~jhows the frequency loci

of the input admittance for KL = 500$2 and N= 32. In

this figure j. denotes the resonant frequency of the

quadruple mode of a regular square, circuit having

dimensions 2a by 2a, In this figure parallel resonances

are found at O.54j o and O.86f o, and a series resonance

at O.64~0.
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Fig. 12. Center conductor of an irregularly shaped circuit.
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The frequency locus of the input admittance
for RL = 500 Q and N = 30.
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Fig. 15. (a) One-port square resonator. (b) One-port disk-shaped
resonator. (c) The equivalent circuit describing the input admit-
tance of one-port resonator.

n

line integral

$1v(s) = – G(s so)in(so)dso (18)
o

Fig. 14. Symbols used in the Green’s function analysis.

IV. ANALYSIS BASED UPON GREEN’S FUNCTION

When the shape of the circuit is relatively simple (a

disk, for example) and we can get the Green’s function

of the wave equation analytically, the equivalent cir-

cuit parameters can be derived directly from the

Green’s function as follows.

We introduce the Green’s function G of the second

kind, having a dimension of impedance which satisfies

inside the contour C shown in Fig. 14, and an open

boundary condition

dG/c% = O (17)

along C. In (16), i(xo, yo) denotes an assumed (fictitious)

RF current density injected normally into the circuit

(see Fig. 14).

In a real planar circuit, current is injected from the

periphery where a coupling port is present. Hence the
RF voltage at a point upon the periphery is given by a

wheres and so are used to denote distance along C, and

& is the line current density normal to C at coupling

ports. Since & is present only at coupling ports, the

RF voltage at the ith port is given approximately as

where .Tj = — 2~wjin (so)dso represents the current flowing

into the jth port on both the upper and lower surfaces.

Hence, the elements of the impedance matrix of the

equivalent ~-port circuit are

Z<j = *J’JW:(+OWA Go
*9

As examples of the analysis based upon Green’s func-

tion, the input impedances of one port disk and square

circuits as shown in Fig. 15 are calculated.

A. Square Circuit

For a square circuit pattern [see Fig. 15(a)] having

a X b, the Green’s function is given as [9]

. Cos (k.%) Cos (kvy) (21)

where k== m~~a and kg= n~/b.

We compute the input impedance [Zi. shown in

Fig. 15(a) ] of a one-port square circuit having the
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TABLE II

THE PROPERFUNCTIONANDEQUIVALENTCIRCUITPARAMETERS
OFTHETRIPLATE-TYPE,SCYJARE,ANDDISK CIRCUITS

Square Resonator Disk Resonator

Planar Resonator [Fig. 15(a)] [Fig. 15(b)]

Proper function Cos (k=z) Cos (kwy) JW(km=r) Cos (?no)

Resonant fre- v’(m/a)’-l- (n/b)’ km.
quency& 24G 27r@

Cm.
eab 1
——
2d F

L7nn
2pd pd 1

rr (ak~.)’–m’~(twr/a)2+ (nr/b)2] F — ‘—
F

Gmn 2irfrnnCmJQo M&n7JQo

F
r%%’ r$?!))’

Qo-l=Qd-l+Qe-l

Qo Q,= I/tan a (8 is the 10SSangle of the dielectrics)

Q.= 13/r (r is the skin depth of the conductor)

coupling port at one of the corners as shown in Fig.

15(a). Equations (20) and (21 ) directly give

Zi.=~~
j-q.d(sin (k$17’)/kZ~) 2

(22)
nm ab(hzz + kv2 — k2) “

When we use (Fl) and (F2) to consider the circuit

loss, we obtain, after some computations,

where c~n, L~m, and G~. are the equivalent circuit pa-

rameters corresponding to each mode, and are tabu-

lated in Table 11.3 Equation (23) suggests that the

equivalent circuit describing the input impedance is

given [see Fig. 15(c) ] as a series connection of many

parallel resonating circuits representing each resonance.

B. Disk Circuit

The disk circuit is shown in Fig. 15(b). The Green’s

function is given as

G(r, 6 ] rrj, I%)

“xx
2jupdYm(km.a)Jm(kmn7) Cos (r?z(e – 00))

— (24)

n ~ (km.’ – k’)a’(1 – n32/a2km.2)Jm’(kmna)

where k~n satisfies

~ J~(k~nr) I ,=~ = O (nth root). (25)

~ When we are concerned only with the circuit performance near
a single resonant frequency, we can also derive the equivalent circuit
parameters from the resonant frequency, stored energy, and the
unloaded Q factor. The parameters thus obtained agree with those
shown in Table I ~, except for the factor F describing the effect of the
width of the termmal. This sort of analysis is fairly common in micro-
wave circuit analyses. For example, one of the review-ers of this
paper called the authors’ attention to [10].

P cCoNTcwo

Fig. 16, Symbols used in the derivation of (4),

The equivalent circuit parameters of a one-port disk-

shaped circuit can be computed by using (20), and are

tabulated in Table II.

C. Multifiort Disk and Squaw Circuits

The Green’s function analysis can be applied to the

circuit of this sort, which is useful in practical inte-

grated circuitry as filters or hybrids. However, those

examples are omitted for space limitations and will be

reported elsewhere.

V. CONCLUSION

What is emphasized is that we can analyze an arbi-

trarily shaped planar circuit within a reasonable com-

puter time. The design of a planar circuit, based upon

the high-speed computer analysis and the trial-and-

error principle, will also be possible within several years.4

Among possible applications of the planar circuit, the

applications in Gunn and IMI?ATT oscillators seem to be

promising. Since they are oscillation devices having rela-

tively low impedances, the oscillator performance can

be improved by using the planar circuit instead of the

stripline circuitry.

APPENDIX

DERIVATION OF EQUATION (4)

The RF voltage at a piont P’ inside the periphery

satisfies the following Weber’s solution for cylindrical

waves [6],

4jv(P’) =
${

r3v(Q)
Ho(’) (~r) —

c &’3

dHo(2)(kr)

}
– V(Q) ~M – ds. (Al)

To obtain the RF voltage of the point P just upon the

periphery, a little algebra is required. We first define a

point P’ just inside the point P as shown in Fig. 16,

where we assume that 6<<cx<<k-1. By using the following

approximations of the Hankel function near the origin
——.

2j k~s’ + 62
Ho(z) (~r) + – .-@ —–––

7r 2

WO(2)(LV) ~ 2j 8
=—-

6’?2 “ Ir s2 + 82

1 For example? the time required to obtain the entire data in Fig.
8 is about 100s using a typical Japanese high-speed computer HITAC-
5020E. The improvement in the speed by a factor of (1/10) may be
needed for the design.
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we can rewrite

4jv(P’)

s{

a 2j k~s2 + 82 al’ “ 8
. — — log ~+~

}
—— V ds

—a R- 2 7r s’+&

where r denotes the contour excluding the section

—a~+a. If 11 and d ~/&s vary slowly in the minute

section between — a and a, the integrals in (A2) become

4’j d’v

{(

k~a’ + 62
___ _ a! log —— –1

T d% 2- )

k~

(

4a2 + & ~

—— arc cosec ——

)}

(A3)
2 8 ‘T

2j m
—

J
—:— Vds = 3 V tan–l ~ . (A4)

n- -. s’ + 8’ T

When P’ approaches P, and hence 8 tends to zero, (A2),

(A3), (A4) give

4’V(P’)=-%{”(10’:-’)}‘2’V(P)
+j’ {~o(’)(kr) : – V

dEo@)(k?’)

)
ds. (AS)

r al’s

Next, as a tends to zero, the first term in the right-hand

side of (AS) vanishes, and hence

‘Y{ t)Ho(2) (kr)
2jV(P) = ~o(z)(~r) + – v

)
ds. (A6)

c &2

This equation and the relations

at’
_. — jiqtd in
tln

give (4) in the text.
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